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ABSTRACT

This paper provides preliminary results of the study of
the acoustic radiation from the source model

representing spatially-growing instability waves in a

round jet at high speeds. The source model is briefly
discussed first followed by the analysis of the produced

acoustic directivity pattern. Two integral surface
techniques are discussed and compared for prediction

of the jet acoustic radiation field.

INTRODUCTION

In [1 ], a model for the sound source in supersonic jets is

developed based on the assumption that the unsteady
fluctuations in the noise-producing jet mixing layer are

dominated by coherent, large-scale structures which
closely resemble instability waves [2], [3]. Within the

integral energy approach, the coherent structure is
modeled based on splitting the flow into three

components: a time-average mean component, a large-
scale wave-like coherent component, and a fine-scale
random turbulence component. The kinetic energy

equations obtained from time and phase averaging of

the full compressible Navier-Stokes equations can be
integrated across the jet to produce a set of ordinary

differential equations describing interactions among
various scales of motion. With certain shape

assumptions, these equations can be solved to yield the
development of each flow component, which may be
used as a source for subsequent acoustic radiation

predictions.

In the present study, the source obtained in [ 1] is treated
as the jet near field, and two integral methods based on
the Kirchhoff surface approach [4], [5] are applied to

investigate pattern of the jet acoustic radiation in the far

field. The corresponding numerical formulations are
discussed, and the numerical results are compared

against the analytical benchmark for the monopole
source radiation. The comparison is then extended to

the prediction of the acoustic radiation of the jet helical
modes.

JET ACOUSTIC SOURCE FORMULATION

Following [1], we consider a high-Reynolds number

turbulent jet issuing from a nozzle of diameter D in a
still air. The jet is assumed shock-free, and is excited
by a single-frequency instability wave of Strouhal

number St=fD/U. The density and the velocities are
normalized by the jet exit density and velocity at the

centerline. The development of large-scale, coherent,

wave-like structure profiles in the compressible round

jet is then obtained using the integral energy method
and following the locally-parallel linear stability theory.

For the purpose of the present analysis, the results are

presented as single-frequency, single-azimuthal number
modes which, for the pressure perturbation, take the

form,

p'(x,r,(_,t): _(r)A(x)exp(i ctdz-icot)cos(nqk)+cc, (1)

where ^ denotes the transversal shape function of the

transversal coordinate r at a given location along the jet

(also, the eigenfunctions corresponding to a given n and

co), n is the azimuthal wave number indicating the

rotation around the jet centerline, c_ is the axial wave

number, o_ is the excitation frequency, and cc denotes

the complex conjugate. A(x) is the complex amplitude
function of x which is determined, in general, from a

nonlinear analysis.
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Figures 1 and 2 compare results obtained in [1] for the

predicted development of the jet instability wave
amplitude function using the linear and nonlinear
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analyses,for St=0.2, n=l, and the jet Mach numbers
M=0.9, 1.2, 1.5, and 1.8. Figure 1 shows the

development of the pressure wave magnitude along the

jet axis at r=D/2. Note that the nonlinear effects limit
the amplitude growth and shift the peak amplitude

towards the jet nozzle exit. These effects become more

pronounced as the Mach number increases. Figure 2
illustrates the variation of the pressure magnitude in the
radial direction at a fixed axial position corresponding

to x=l.5D.
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Figure 1. Axial variation of the pressure magnitude for
the jet instability wave with linear (dashed line) and
nonlinear (solid line) amplitude development: r=D/2,

St=0.2, n=l, (a) M=0.9, (b) M=l.2, (c) M=l.5, (d)
M=1.8.

FORMULATIONS FOR ACOUSTIC

PREDICTION

Using the near-field data as illustrated in Figures 1 and

2, the present work calculates and compares the far
field acoustic radiation of the jet instability wave using

two integral numerical techniques, the Kirchhoff
method and its extension, the Surface-Integral

Formulation (SIF). Both methods are based on

evaluating the near-field unsteady flow data on a
control surface surrounding the nonlinear flow region,

and propagating the unsteady flow information to the
far field through the linear flow region. However, the

numerical implementations contain some essential
differences, as discussed below.

The Kirehhoff Method

Following [4], a formulation of the Kirchhoff method is

implemented with assumption of a uniform flow
outside the control surface S which encloses all the

sound sources. In the outer region, the convective wave

equation for the acoustic pressure p 'applies,

±+±/2p':°VZ P'- U° Ox Ot j
(2)

where Cois the speed of sound, and Uo is the flee stream

velocity in x-direction which is less than the speed of
sound. The Prandtl-Glauert transformation
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Figure 2. Radial variation of the pressure magnitude for

the jet instability wave with linear (dashed line) and
nonlinear (solid line) amplitude development: x=l.5D,
St=0.2, n=l, (a) M=0.9, (b) M=l.2, (c) M=l.5, (d)
M=1.8.

Xo = x, Yo = flY, Zo = flz (3)

converts the convective wave equation into the simple

wave equation which can be solved for the acoustic

pressure field,

+,/=--' - ',,, 4.n.;,p.oL&,9,,,oc3no Cofl2at ' dS°

(4)

where the subscript "o" denotes the transformed

variables, n = (n_, n, nO is the outward normal to the

surface S, and the subscript r indicates that all the
values are calculated at the retarded time,

t r ---- t - r, (5)

Ro is the distance between the observer and the surface

point in the Prandtl-Glauert coordinates,

and rand # are defined as
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(7)
Co_ 2

1

fl =(1-Mo2) '_ (8)

where Mo= Uo/ Cois the free stream Mach number.

Equation (4) describes the sound pressure at an
observer point (X, Y, Z) in terms of the source

information provided on the control surface S. In

general, the pressure and its normal and time
derivatives are required to be specified through
numerical simulation, or some other means. This may

represent a difficulty using the Kirchhoff method as the
numerical results tend to be very sensitive to the

accuracy of the derivatives estimate.

The Surface-Integral Formulation (SIF)
An alternative Surface-Integral Formulation (SIF) has

been developed in [5] to eliminate the need to estimate
pressure derivatives on the control surface. In

application to the present jet noise study, a control
surface is considered as a cylinder of radius a and

length L enclosing all the jet acoustic sources, as
illustrated in Figure 3. It will be further assumed that
the mean flow outside the cylinder is stagnant, and thus

the acoustic disturbances are described by the simple

wave equation in the cylindrical coordinates:

1 O2p _ 0
V2p c 2 c3t2

(9)

Since the jet pressure modes (1) are excited with a
specified frequency co, it is convenient to transform
formulation to the frequency domain by applying the
Fourier transform to (9). The integral solution is then

obtained in the form,

P(X, co) = - J[G-_n (10)

where p(X,(o) is the acoustic pressure at the

observation point X = (X, R, q_), G is the Green

function, n is the normal to the surface S, and p(x, o3

is the pressure distribution on the control surface at a

point x = ( x, r, ¢).

............. 15'__
I-- L ,I

Figure 3. Cylinder used for validation of numerical
codes.

The approach of the SIF formulation is to seek a
solution such that G = 0 on the control surface r = a,

using the method of images. Morse and Ingard [6] give
the Green function for emission from a cylinder of

radius a at a point R, for R > a, as
ao

-I ( ) ()g_== e Jr. qr H,. qR dk. (ll)

where

i nl=_

"_ = -- _--] G. cos [m (¢ - (1))]
8er ,,=0

(12)

and

q=a/-£-f-k# for k x <k (13)

• 2 for k x > k, (14)q = tX/-_ 2 -k 2

where cm is Neumann constant, c,, = 1 for m = 0, and c_
= 2 for m > 0. J,, is the mth order Bessel function, H,, is
the mth order Hankel function of the first kind, and kx is
the wavenumber in the x-direction of the acoustic

disturbance at the surface. For the image of the point R
at a2/R, the Green function is

g2 == je nm(qr)J _ q dk x (15)

Adding the two solutions (11) and (15), one obtains,
after algebraic manipulations, the required Green
fimction which satisfies the control surface condition

G(r = a) = O,

G=E5 eik'(x-x) H_(qR)H_(qa)x
-¢¢

[Jm( qr)H_( qa)-J_( qa)Hm( qr)]d_x

(16)
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and,usingatr = a the relationship

H'(u)J(u)-J'(u)H(u)= 2i ,

one also obtains,

m=ct_

0G_ 1 Z  cos[m(0_.) x
Or 4z2a ..=0

oo

Ie,kr(Xo-x) H_(qR) dk
-_ H_(qa) x

(17)

With G = 0 at the control surface, the integral solution
reduces to

p(X,R,*)= IpO-_-Gadxd¢
OF

(18)

Substituting, the acoustic field is obtained as

m=oo

p(X,R,O)= _ flp(x,a,¢_) Z g,. cos[rn (¢ - *)]
4 2-2 r.=o

x Ie ''(x-x) H,.(qR) dk.dxd(b (19)
-_ H,.(qa)

The formula (19) describes the relation between the
acoustic far-field and the pressure distribution on a

cylindrical control surface surrounding the jet noise

sources. To perform the volume integration, the surface

pressure on the cylindrical surface is taken as

//=oo

p(x,a, fb, co)= _-]p. (x,a, co)cosn¢,
rt=0

(20)

and the integration over the azimuthal direction is then

performed to obtain the final formula,

p(X,R,(9, co) =

Lcosta* fpm (x,a, co) x
2z m_7_:O o kL

H,,(qa)
-kl.

(21)

where kL is selected as the Nyquist limit, kL=_Ax, and

Ax is spacing between the x-points on the cylinder. For
the numerical implementation, the order of integration

in (21) can be reversed.

Point Source Comparison
Prior to applying to the _jet acoustic predictions, the two
numerical codes implementing the Kirchhoff method

and the SIF formulation are validated against the point
source test.

The pressure distribution on the control cylindrical
surface resulting from a monopole located in the middle

of the cylinder, as shown in Figure 3, is described by

p(Xs, t) = 1 Re [exp {--iCOtrs } ], (22)

r,

where, similar to (5) and (6),

l
(x ',y ',z ') is the source location at the midpoint of the

centerline, and the retarded time tr, on the cylinder
surface is determined from

r. - Mo(x, - x' )

It, = t Coil2

For calculations using the Kirchhoff method, both the

pressure and its normal derivative to the surface have to
be introduced in (4). The code takes into account the

contribution from both the left and the right bases of the

cylinder surrounding the point source, and thus the
length L can be taken as small as needed. For

computations, the values of a=l and L/a=10 are used.
For further comparison, the obtained time-domain
results are converted into frequency domain using
MATLAB FFT. For the SIF numerical

implementation, the frequency-domain analysis is
carried out by first factoring out time t in (22). The

contribution from the bases is not currently taken into
account, and the ratio L/a should be large enough for

accurate predictions. In all the computations, the

number of points per wavelength in each direction is
about 12, which provides an error of less then 0.5%

according to estimates in [4].
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Figure 4. Validation against the point source.

The results of the two codes are compared in Figure 4

for cO/co=l and Mo=O. In the calculations, a=l, and the
observer points are located at R/a=50, -50<X/a<50.
Note that the two codes show very close results for the

acoustic pressure amplitude, and both match with the

exact solution. The codes are very fast and require only

seconds of CPU time per observer point on the PC

computer.

RESULTS AND DISCUSSION

line) and SIF (dashed line) predictions. Source data

from linear jet instability wave analysis: St=0.2, n=l,

M=1.2.
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Figure 6. Pressure amplitude distribution along the x-

axis at r/(D/2)=lO, 25, 50: Kirchhoff method (solid
line) and SIF (dashed line) predictions. Source data

from nonlinear jet instability wave analysis: St=0.2,

n=l, M=1.2.

The two formulations are now applied to predict the

acoustic radiation pattern produced by the coherent cold

jet structure described by (1). A single helical mode
with n=l is excited with Strouhal number St=0.2, and

the acoustic response is calculated for the jet Mach
numbers M=0.9, 1.2, 1.5, and 1.8. Figures 1 and 2

illustrate the development of the near-field unsteady
pressure amplitude obtained from the linear and

nonlinear analyses, as discussed above.
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Figure 5. Pressure amplitude distribution along the x-

axis at r/(D/2)=lO, 25, 50: Kirchhoff method (solid
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Figure 7. Pressure amplitude distribution along the x-

axis at r/(D/2)=lO, 25, 50: Kirchhoff method (solid

line) and SIF (dashed line) predictions. Source data

from linear jet instability wave analysis: St=0.2, n=l,

M=1.8.
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Figure 8. Pressure amplitude distribution along the x-
axis at r/(D/2)=lO, 25, 50: Kirchhoff method (solid

line) and SIF (dashed line) predictions. Source data
from nonlinear jet instability wave analysis: St=0.2,

n=l, M=l.8.

Figures 5-8 present the comparison of the results from

the two prediction codes for two cases, corresponding
to M=l.2 and 1.8, for both linear and nonlinear wave

amplitude development. The observer points are located
parallel to the jet axis (from the jet origin) at three radii,

r/(D/2)=lO, 25 and 50, from the jet centerline. All the
lengths in these and subsequent figures are normalized

by the initial jet radius, D/2. Note that the two codes
show similar results, but a discrepancy in both the

amplitude and the phase is also evident, and more

pronounced at M=l.2. In all the computations, the right
boundary of the control surface is taken far enough so
that the sound source has practically decayed and no
contribution from the base is expected. The actual

values taken for L/(D/2) vary for different cases since,

from Figure 1, the source extends much further in the
linear cases. The differences between the results

predicted by the two codes may be primarily attributed
to the sensitivity of the Kirchhoff method to the

accuracy of the normal pressure derivative estimates on
the control surface. The normal derivatives are obtained

by numerical approximation from the source data given
at uniformly discretized radial locations. The latter
itself is produced by interpolating from a non-uniform
mesh used by the source prediction code. Moreover, the

sensitivity study for the placement of the control
surface has revealed that, while the value of the proper
control surface radius is stable in the SIF code

calculations for different cases, the Kirchhoff method

code requires careful selection of the control surface
location in each case. A typical range of the control
surface radii has varied within r/(D/2)=l.5...2.5.

Below this limit, the source is not adequately enclosed

by the control surface; and for larger values of rs, the
source has sufficiently decayed so the data input is not

adequate for accurate acoustic predictions. In that case,
as r, further increases, the results usually show

decreasing values of the acoustic pressure amplitude at
a fixed far-field observer location.
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Figure 9. Pressure amplitude distribution along the x-
axis at r/(D/2)=50. Source data from linear (dashed
line) and nonlinear (solid line) jet instability wave

analysis, St=0.2, n=l: (a) M=0.9, (b)M=l.2, (c) M=I.5,

(d) M=l.8.

The rest of the results presented in Figures 9-11 are
based on the SIF code calculations. Figure 9

summarizes the acoustic predictions for all the selected
cases obtained at r/(D/2)=50 along the jet axis. The
results obtained for the linear and nonlinear source

amplitude development are compared. As expected, the
acoustic response is much higher in the linear cases,

and both show the response increasing for higher jet
Mach numbers.

Finally, Figures 10 and l 1 show the sound pressure
level (SPL) contours calculated for the linear and

nonlinear wave amplitude development, respectively.
The predictions for the linear source amplitude analysis
show a trend to develop a multi-lobe directivity pattern,

which points to the effect of the non-compact source
distribution due to the excessively large axial extension

of the instability wave structure. The nonlinear results

exhibit the characteristic jet directivity pattern as
observed in the experiment (compare with Figure 12

from [7], with the data obtained for St=0.2 and M=2.1)
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Figure 10. Predicted SPL contours for linear jet
instability wave analysis, St=0.2, n=l ' (a) M=0.9, (b)

M= 1.2, (c)M=l.5, (d)M=I.8.
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Figure 11. Predicted SPL contours for nonlinear jet
instability wave analysis, St=0.2, n=l: (a) M=0.9, 09)

M=1.2, (c) M=1.5, (d) M=1.8.

CONCLUSIONS

Two integral surface numerical techniques, the
Kirchhoff method and the Surface-Integral

Formulation, were compared for prediction of the

acoustic radiation field produced by the source model

representing spatially-growing instability" waves in a
round jet at high speeds [1]. Both methods require the
unsteady pressure information on a control surface

surrounding the sound source, and propagate this
information to the far field through the linear flow

region. In addition, the Kirchhoff method requires
normal and time derivatives to be specified on the

control surface, and is sensitive to the accuracy of their

approximation.

The acoustic results based on the provided data for the

linear and nonlinear amplitude development of the jet

instability wave were compared. The acoustic response
was found to be much higher in the linear cases, and
results for both linear and nonlinear source analyses

showed the acoustic response increasing for higher jet
Mach numbers. The acoustic directivity predictions for

the linear source analysis revealed a trend to develop a

multi-lobe pattern attributed to the non-compact source
distribution due to the large axial extension of the

instability wave structure. The nonlinear source
analysis produced a characteristic jet directivity pattern

which is in qualitative agreement with observations.
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